72 research outputs found

    Phenotypic and genetic variation in an Apios americana breeding collection; and characterization of the HD-Zip gene family, involved in abiotic stress responses in Glycine max

    Get PDF
    This dissertation has two main objectives: (1) morphological and genetic characterization of a little-studied edible legume native to North America, Apios americana; and (2) characterization of the soybean (Glycine max) homeodomain leucine zipper (HD-Zip) transcription factor family (involved in abiotic stress responses), and identification of candidate genes for dehydration and salt stress. In these projects, next generation sequencing (NGS) is evaluated as a tool for rapidly characterizing genetic variation (in Apios) and fine-scale genetic responses to abiotic stress (in soybean). Apios, commonly called “potato bean,” is a nitrogen-fixing legume that is adapted to diverse climatic conditions of central and eastern North America. It produces tubers (modified stem-tubers) that are rich in protein, have a long shelf life under refrigeration (\u3e1 year), contain isoflavones, and have low levels of reducing sugars (potentially making the tubers useful for fried chips, for example). The plant was once a staple wild-collected food of Native American Indians, and is now a cultivated crop in Japan and South Korea. William J. Blackmon and Berthal D. Reynolds evaluated Apios as a new edible tuber crop in the US during the 1980s. Their breeding efforts during 1985-1994 lead to a collection of improved genotypes. As of 2010, 53 genotypes remained from Blackmon and Reynolds’ work. As part of this dissertation project, phenotypic evaluation of these 53 genotypes was performed for multiple years, in multiple environments (Iowa, Virginia and Pennsylvania), and in three growing conditions (field, 305-mm [12-in.] pots and 381-mm [15 in.] grow-bags). Twenty traits were recorded, including 10 aboveground and 10 belowground measurements. There was significant variation among the genotypes for all but two emergence traits. Several genotypes produced high yields - up to 1,515 g of tuber yield/plant. Transcriptome sequencing of multiple tissues from a single genotype generated both a high-quality de novo reference transcriptome assembly and an expression catalog. Re-sequencing of the leaf transcriptome from all the genotypes in the collection allowed identification of 58,154 high-quality SNPs and 39,609 gene expression markers (GEMs). Both SNPs and GEMs revealed population structure and pedigree relationships in the collection. Transcripts mapped to Phaseolus vulgaris (another legume in the Phaseoleae clade as Apios, with the same chromosome number and presumably similar genome structure) helped in building pseudo-Apios chromosomes. Linkage disequilibrium decay was investigated in the collection using putative genomic locations of the SNP markers, derived using the pseudo-Apios chromosomes. Association analysis conducted using SNPs and GEMs identified marker-trait associations for at least 11 traits. In summary, this study demonstrates accelerated and holistic (genomic and phenotypic) exploration of an underutilized crop. The HD-Zip transcription factor family includes genes involved in abiotic stress. HD-Zip genes are well characterized in Arabidopsis thaliana, but not yet in soybean. As part of this dissertation project, HD-Zip genes were identified in the soybean genome using homology searches and Hidden Markov Model guided sequence alignments. Phylogeny reconstruction enabled placement of HD-Zip sequences into four previously described subfamilies. Syntenic paralog pairs were retained following polyploidy in Glycine ~13 Mya. RNA-Seq analysis identified 20 differentially expressed HD-Zip genes in the roots of soybean cv. ‘Williams 82’, at least at one of the three time points (1, 6, or 12 hr) under dehydration and salt stress. This indicates the role of HD-Zip genes in abiotic stress responses. Expression profiles generated for genes expressed in roots at 0, 1, 6 and 12 hr under dehydration and salt stress will serve as an important resource for soybean genomic studies, and will aid in understanding plant responses to dehydration and salt stresses

    Insights into the Genetic Architecture of Bran Friability and Water Retention Capacity, Two Important Traits for Whole Grain End-Use Quality in Winter Wheat

    Get PDF
    Bran friability (particle size distribution after milling) and water retention capacity (WRC) impact wheat bran functionality in whole grain milling and baking applications. The goal of this study was to identify genomic regions and underlying genes that may be responsible for these traits. The Hard Winter Wheat Association Mapping Panel, which comprised 299 lines from breeding programs in the Great Plains region of the US, was used in a genome-wide association study. Bran friability ranged from 34.5% to 65.9% (median, 51.1%) and WRC ranged from 159% to 458% (median, 331%). Two single-nucleotide polymorphisms (SNPs) on chromosome 5D were significantly associated with bran friability, accounting for 11–12% of the phenotypic variation. One of these SNPs was located within the Puroindoline-b gene, which is known for influencing endosperm texture. Two SNPs on chromosome 4A were tentatively associated with WRC, accounting for 4.6% and 4.4% of phenotypic variation. The favorable alleles at the SNP sites were present in only 15% (friability) and 34% (WRC) of lines, indicating a need to develop new germplasm for these whole-grain end-use quality traits. Validation of these findings in independent populations will be useful for breeding winter wheat cultivars with improved functionality for whole grain food applications

    Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat

    Get PDF
    Synthetic hexaploid wheat (SHW; 2n = 6x = 42, AABBDD, Triticum aestivum L.) is produced from an interspecific cross between durum wheat (2n = 4x = 28, AABB, T. turgidum L.) and goat grass (2n = 2x = 14, DD, Aegilops tauschii Coss.) and is reported to have significant novel alleles-controlling biotic and abiotic stresses resistance. A genome-wide association study (GWAS) was conducted to unravel these loci [marker–trait associations (MTAs)] using 35,648 genotyping-by-sequencing-derived single nucleotide polymorphisms in 123 SHWs. We identified 90 novel MTAs (45, 11, and 34 on the A, B, and D genomes, respectively) and haplotype blocks associated with grain yield and yield-related traits including root traits under drought stress. The phenotypic variance explained by the MTAs ranged from 1.1% to 32.3%. Most of the MTAs (120 out of 194) identified were found in genes, and of these 45 MTAs were in genes annotated as having a potential role in drought stress. This result provides further evidence for the reliability of MTAs identified. The large number of MTAs (53) identified especially on the D-genome demonstrate the potential of SHWs for elucidating the genetic architecture of complex traits and provide an opportunity for further improvement of wheat under rapidly changing climatic conditions

    Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat

    Get PDF
    Background: Synthetic hexaploid wheat (SHW) is a reconstitution of hexaploid wheat from its progenitors (Triticum turgidum ssp. durum L.; AABB x Aegilops tauschii Coss.; DD) and has novel sources of genetic diversity for broadening the genetic base of elite bread wheat (BW) germplasm (T. aestivum L). Understanding the diversity and population structure of SHWs will facilitate their use in wheat breeding programs. Our objectives were to understand the genetic diversity and population structure of SHWs and compare the genetic diversity of SHWs with elite BW cultivars and demonstrate the potential of SHWs to broaden the genetic base of modern wheat germplasm. Results: The genotyping-by-sequencing of SHW provided 35,939 high-quality single nucleotide polymorphisms (SNPs) that were distributed across the A (33%), B (36%), and D (31%) genomes. The percentage of SNPs on the D genome was nearly same as the other two genomes, unlike in BW cultivars where the D genome polymorphism is generally much lower than the A and B genomes. This indicates the presence of high variation in the D genome in the SHWs. The D genome gene diversity of SHWs was 88.2% higher than that found in a sample of elite BW cultivars. Population structure analysis revealed that SHWs could be separated into two subgroups, mainly differentiated by geographical location of durum parents and growth habit of the crop (spring and winter type). Further population structure analysis of durum and Ae. parents separately identified two subgroups, mainly based on type of parents used. Although Ae. tauschii parents were divided into two sub-species: Ae. tauschii ssp. tauschii and ssp. strangulate, they were not clearly distinguished in the diversity analysis outcome. Population differentiation between SHWs (Spring_SHW and Winter_SHW) samples using analysis of molecular variance indicated 17.43% of genetic variance between populations and the remainder within populations. Conclusions: SHWs were diverse and had a clearly distinguished population structure identified through GBS-derived SNPs. The results of this study will provide valuable information for wheat genetic improvement through inclusion of novel genetic variation and is a prerequisite for association mapping and genomic selection to unravel economically important marker-trait associations and for cultivar development

    Identification and Validation of High LD Hotspot Genomic Regions Harboring Stem Rust Resistant Genes on 1B, 2A (Sr38), and 7B Chromosomes in Wheat

    Get PDF
    Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is an important disease of common wheat globally. The production and cultivation of genetically resistant cultivars are one of the most successful and environmentally friendly ways to protect wheat against fungal pathogens. Seedling screening and genome-wide association study (GWAS) were used to determine the genetic diversity of wheat genotypes obtained on stem rust resistance loci. At the seedling stage, the reaction of the common stem rust race QFCSC in Nebraska was measured in a set of 212 genotypes from F3:6 lines. The results indicated that 184 genotypes (86.8%) had different degrees of resistance to this common race. While 28 genotypes (13.2%) were susceptible to stem rust. A set of 11,911 single-nucleotide polymorphism (SNP) markers was used to perform GWAS which detected 84 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1B, 2A, 2B, 7B and an unknown chromosome. Promising high linkage disequilibrium (LD) genomic regions were found in all chromosomes except 2B which suggested they include candidate genes controlling stem rust resistance. Highly significant LD was found among these 59 significant SNPs on chromosome 2A and 12 significant SNPs with an unknown chromosomal position. The LD analysis between SNPs located on 2A and Sr38 gene reveal high significant LD genomic regions which was previously reported. To select the most promising stem rust resistant genotypes, a new approach was suggested based on four criteria including, phenotypic selection, number of resistant allele(s), the genetic distance among the selected parents, and number of the different resistant allele(s) in the candidate crosses. As a result, 23 genotypes were considered as the most suitable parents for crossing to produce highly resistant stem rust genotypes against the QFCSC

    Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery

    Get PDF
    Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm. Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds. Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing

    Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat

    Get PDF
    Synthetic hexaploid wheat (SHW; Triticum durum L. x Aegilops tauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals

    Genotyping-by-Sequencing Derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat

    Get PDF
    Winter wheat parents ‘Harry’ (drought tolerant) and ‘Wesley’ (drought susceptible) were used to develop a recombinant inbred population with future goals of identifying genomic regions associated with drought tolerance. To precisely map genomic regions, high-density linkage maps are a prerequisite. In this study genotyping-by-sequencing (GBS) was used to construct the high-density linkage map. The map contained 3,641 markers distributed on 21 chromosomes and spanned 1,959 cM with an average distance of 1.8 cM between markers. The constructed linkage map revealed strong collinearity in marker order across 21 chromosomes with POPSEQ-v2.0, which was based on a high-density linkage map. The reliability of the linkage map for QTL mapping was demonstrated by co-localizing the genes to previously mapped genomic regions for two highly heritable traits, chaff color, and leaf cuticular wax. Applicability of linkage map for QTL mapping of three quantitative traits, flag leaf length, width, and area, identified 21 QTLs in four environments, and QTL expression varied across the environments. Two major stable QTLs, one each for flag leaf length (Qfll.hww-7A) and flag leaf width (Qflw.hww-5A) were identified. The map constructed will facilitate QTL and fine mapping of quantitative traits, map-based cloning, comparative mapping, and in marker-assisted wheat breeding endeavors

    Genomic Selection in Preliminary Yield Trials in a Winter Wheat Breeding Program

    Get PDF
    Genomic prediction (GP) is now routinely performed in crop plants to predict unobserved phenotypes. The use of predicted phenotypes to make selections is an active area of research. Here, we evaluate GP for predicting grain yield and compare genomic and phenotypic selection by tracking lines advanced. We examined four independent nurseries of F3:6 and F3:7 lines trialed at 6 to 10 locations each year. Yield was analyzed using mixed models that accounted for experimental design and spatial variations. Genotype-by-sequencing provided nearly 27,000 high-quality SNPs. Average genomic predictive ability, estimated for each year by randomly masking lines as missing in steps of 10% from 10 to 90%, and using the remaining lines from the same year as well as lines from other years in a training set, ranged from 0.23 to 0.55. The predictive ability estimated for a new year using the other years ranged from 0.17 to 0.28. Further, we tracked lines advanced based on phenotype from each of the four F3:6 nurseries. Lines with both above average genomic estimated breeding value (GEBV) and phenotypic value (BLUP) were retained for more years compared to lines with either above average GEBV or BLUP alone. The number of lines selected for advancement was substantially greater when predictions were made with 50% of the lines from the testing year added to the training set. Hence, evaluation of only 50% of the lines yearly seems possible. This study provides insights to assess and integrate genomic selection in breeding programs of autogamous crops

    Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing

    Get PDF
    The availability of information on the genetic diversity and population structure in wheat (Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F3:6) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon’s information index (I) = 0.494, diversity index (h) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity (I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars
    • 

    corecore